Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269311

RESUMO

Zinc oxide (ZnO) has interesting optoelectronic properties, but suffers from chemical instability when in contact with perovskite interfaces; hence, the perovskite deposited on the top degrades promptly. Surface passivation strategies alleviate this instability issue; however, synthesis to passivate ZnO nanoparticles (NPs) in situ has received less attention. Here, a new synthesis at low temperatures with an ethanolamine post treatment has been developed. By using ZnO NPs prepared with ethanolamine and butanol (BuOH), (E-ZnO), the stability of the FA0.9Cs0.1PbI3 (FACsPI)−ZnO interface was achieved, with a photoconversion efficiency of >18%. Impedance spectroscopy demonstrates that the recombination at the interface was reduced in the system with E-ZnO/perovskite compared to common SnO2/perovskite and that the quality of the perovskite on the top is clearly due to the ZnO in situ passivation with ethanolamine. This work extends the use of E-ZnO as an n-type charge extraction layer and demonstrates its feasibility with methylammonium perovskite. Moreover, this study paves the way for other in situ passivation methods with different target molecules, along with new insights regarding the perovskite interface rearrangement when in contact with the modified electron transport layer (ETL).

2.
ACS Energy Lett ; 6(10): 3511-3521, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34660905

RESUMO

Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and is challenging to stabilize in an ambient environment. In this work, we show that pure FAPI perovskite solar cells (PSCs) have a dramatic increase of device long-term stability when prepared under ambient air compared to FAPI PSCs made under nitrogen, both fabricated with N-methylpyrrolidone (NMP). The T 80 parameter, the time in which the efficiency drops to 80% of the initial value, increases from 21 (in N2) to 112 days (in ambient) to 145 days if PbS quantum dots (QDs) are introduced as additives in air-prepared FAPI PSCs. Furthermore, by adding methylammonium chloride (MACl) the power conversion efficiency (PCE) reaches 19.4% and devices maintain 100% of the original performance for at least 53 days. The presence of Pb-O bonds only in the FAPI films prepared in ambient conditions blocks the propagation of α- to δ-FAPI phase conversion. Thus, these results open the way to a new strategy for the stabilization in ambient air toward perovskite solar cells commercialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...